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ABSTRACT

We describe a new Monte Carlo thermal radiation transport method that is fully implicit in
the value of matter termperature used to calculate thermal emission. This method involves
iterating on the matter temperature until convergence at the time n+ 1 value of the matter
temperature is obtained. Because the method is fully implicit, it eliminates the violations
of the maximum principle that can occur in Implicit Monte Carlo (IMC) simulations on the
problems on which we have tested it. The method has the drawback that it is considerably
more expensive than IMC for simulations with cold opaque regions. We discuss the reasons
for this, and discuss some ways that the number of iterations may be reduced.

Key Words: thermal radiation transport, Monte Carlo methods.

1. INTRODUCTION

The time-dependent frequency-dependent transport equation for photons is [1]

1

c

∂I

∂t
+Ω·∇I = −σt(T, ν)I+σa(T, ν)B(T, ν)+

∫ ∞
0

∫
4π

dν ′dΩ′ σs(T, ν, ν ′)I(x, t, ν ′,Ω′)+Sr(x, t, ν,Ω)

(1)
where I(x, t, ν,Ω) is the radiation intensity, with units of energy/(length2 frequency solid angle),
c is the speed of light, T is the material temperature, σa(T, ν) is the macroscopic absorption
opacity in inverse length units, σs(T, ν) is the macroscopic scattering opacity in inverse length
units, and σt(T, ν) = σa(T, ν)+σs(T, ν). B(ν, T ) is the Planck function and Sr(x, t, ν,Ω) is a time
and space-dependent radiation source. This equation comes with initial conditions Iic(x, t,Ω)
defined for all points in the region of interest, and boundary conditions Ibc(x, t,Ω) defined on
the boundary of the region of interest for values of Ω that ensure that Ibc describes incoming
photons. The Planck function is defined via

B(T, ν) ≡ 2hν3

c2

1

e
hν
kT − 1

(2)
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where h is Planck’s constant and k is Boltzmann’s constant. B(T, ν) satisfies∫ ∞
0

dν B(T, ν) =
1

4π
acT 4 , (3)

where a = 8π5k4

15c3h3
is the radiation constant. The thermal emission term, σB, can be written

σa(T, ν)B(T, ν) =
1

4π

σa(T, ν)b(T, ν)

σP (T )
σP (T )acT 4 (4)

where a is the radiation constant, T is the matter temperature, b(T, ν) is the Planck distribution
normalized over frequency, defined by

b(T, ν) ≡ 15

π4

( hνkT )3 h
kT

exp( hνkT )− 1
, (5)

and σP is the Planck mean opacity

σP (T ) =

∫ ∞
0

dν σa(T, ν)b(T, ν). (6)

The expression σa(T,ν)b(T,ν)
σP (T ) is the probability distribution function for the frequency of the

thermally emitted photons.

The transport equation is coupled to the material energy balance equation [1]

∂em
∂t

= ρcv
∂T

∂t
=

∫ ∞
0

dν

∫
4π

dΩ σaI − cσPaT 4 . (7)

Here, em(ρ, T ) is the equation of state, which gives the matter energy density in units of energy
per volume as a function of the mass density and temperature, ρ is the mass density, and cv is
the heat capacity in units of energy per mass per temperature. We assume, here and henceforth,
that ρ is constant in time.

Eqs.(1) and (7) are often solved by Monte Carlo methods. These methods advance solutions
of Eqs.(1) and (7) over a time interval [tn, tn + ∆t] that is small enough that we can regard σa
and σs as fixed at their tn values. Even for small values of ∆t, however, it is not possible to
use T (tn) in the thermal emission term without encountering instabilities [2]. Eliminating these
instabilities is the reason for the development of the Implicit Monte Carlo (IMC) algorithm [3].
IMC uses a semi-implicit approximation to get an estimate of the matter temperature at tn+∆t
[4]. The effect of this approximation is to modify Eqs.(1) and (7) by multiplying the absorption
opacity by a factor

fa =
1

1 + βc∆tσP
(8)

and adding an equal amount of thermally redistributed isotropic scattering. Here β ≡ 4aT 3/ρcv.
Since all the quantities in the denominator are positive, we have fa ∈ (0, 1]. The quantity fa
defined by Eq. (8) is sometimes referred to as the “Fleck factor”. Although the instabilities are
eliminated by the Implicit Monte Carlo method described in [3], thermodynamically inconsistent
matter and radiation temperatures can still result in simulations with large values of ∆t [7].
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In this work, we describe a new iterative Monte Carlo method, which we call Iterative Implicit
Monte Carlo (IIMC). This method is an iterative one which allows us to estimate the value of
T (tn+1) used in calculating thermal emission more accurately than the semi-implicit approxi-
mation used in [3] does. This method does not employ effective scattering; the unmodified tn+1

values of σa and σs are used. This method eliminates thermodynamically inconsistent values of
the temperature, at the sometimes prohibitive cost of running many more particles to describe
thermal emission at various intermediate temperatures.

2. SEPERATING OUT THE THERMAL PART OF THE TRANSPORT
EQUATION

We can take advantage of the linearity of Eq.(1) in I to separate it into 3 parts, only one of which
contains the non-linear term in T . We represent I as the sum of three quantities, Ic + Is + It.
These quantities model the photons that result from the initial conditions, the radiation sources
and boundary conditions, and the thermal emission respectively. In what follows, we will assume
that we can use tn values of the opacity, but we will use an estimate of the tn+1 value of the
temperature for thermal emission.

First, we will model the effects of the initial conditions. We will chose Ic to satisfy the equation

1

c

∂Ic
∂t

+ Ω · ∇Ic = −σt(Tn, ν)Ic +

∫ ∞
0

∫
4π
dν ′dΩ′ σs(Tn, ν, ν ′)Ic (9)

with the initial condition Ic(tn) = Iic and boundary condition Ic = 0 on the boundary of the
region of interest. Note that, because we have fixed the opacities at their value at tn, this
equation is independent of T . In the first time step, Iic describes the initial conditions of the
problem. In subsequent time steps, it describes the value of I at the end of the previous time
step. In a Monte Carlo simulation, Iic would be represented by the census particles from the
previous time step.

Next, we will model the effects of any radiation sources. We will chose Is to satisfy the equation

1

c

∂Is
∂t

+ Ω · ∇Is = −σt(Tn, ν)Is +

∫ ∞
0

∫
4π
dν ′dΩ′ σs(Tn, ν, ν ′)Is + Sr(x, tn, ν,Ω) (10)

with initial condition Is(tn) = 0 and boundary condition Is = Ibc on the boundary of the region
of interest. Note that this equation, like Eq.(9), is independent of T .

We determine the equation satisfied by It by inserting Ic+Is+It into Eq.(1) and subract Eqs.(9)
and (10) from it. The result is

1

c

∂It
∂t

+ Ω · ∇It = −σt(Tn, ν)It + σa(Tn, ν)B(Tn+1, ν) +

∫ ∞
0

∫
4π
dν ′dΩ′ σs(Tn, ν, ν ′)It (11)

with initial condition It(tn) = 0 and boundary condition It = 0 on the boundary of the region
of interest. This equation models the effects of thermally emitted photons. Unlike Eqs.(9) and
(10), this equation contains the non-linear term in T .

Written in terms of Ic, Is, and It, Eq.(7) becomes

∂em
∂t

=

∫
4π

dΩ

∫ ∞
0

dν σa(Ic + Is + It)− cσPa[Tn+1]4 (12)
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Solving Eqs.(9) and (10) by Monte Carlo is straightforward because they do not depend on the
unknown value Tn+1. To solve Eq.(9), we create Monte Carlo particles representing the photons
described by Iic and tn and track their progress until t + ∆t is reached, simulating scatters
and boundary exits and tallying the energy absorbed for later use in Eq.(12). Solving Eq.(10)
is done in a similar manner, the only difference being that Monte Carlo particles are created
during the time step and on the boundaries with times, energies, positions and directions drawn
from distributions derived from the boundary conditions Ibc and the source Sr. Solving these
equations gives us the values of Ic and Is at time tn+1 ≡ tn + ∆t. At the beginning of the next
time step, we use Iic(tn+1) = Ic(tn+1) + Is(tn+1) + It(tn+1) to solve Eqs.(9) and (10) from tn+1

to tn+1 + ∆tn+1. Note that, in solving Eqs.(9) and (10) we are not using the effective scattering
that would be present in the Fleck and Cummings method [3].

This leaves only the problem of solving Eq.(11) for It(t) and Eq.(12) for T (tn+1). We will
describe a technique for doing so in the next section.

3. A SERIES SOULTION FOR It

One way of eliminating thermodynamically inconsistent values of T is to iterate on the value
of T used in the in emission source term in Eqs.(1) and (7). This is called Picard iteration.
This technique requires repeated solution of Eq.(1) using values of T that come from previous
iterations, and then solving Eq.(7) to obtain an updated value of T . The first iteration uses
the value of T at tn. Subsequent iterations use the final value of T obtained from the previous
iteration. This iterative technique produces a sequence of values of Ii and T i, with Ii a function
of T i−1. As i is increased, we hope that Ii and T i converge. Note that, in this scheme, all of
the particles generated using the T i, except for the particles generated using the last value, are
terminated and are not put into census.

This technique is often used by deterministic transport schemes; frequently, some sort of acceler-
ation technique is also used. It is not commonly used with Monte Carlo because of the expense
of multiple solutions of the transport equation, and the expense of storing the beginning of time
step value of I. (In a Monte Carlo simulation, I is represented as a collection of particles, and
we would have to keep a copy of this set, representing I(tn), to use as the initial value of I for
each iteration.)

In this section, we will develop a similar solution technique to solve Eq.(11). However, we are
going to replace the sequence of solutions that result from Picard iteration with a series solution:

It = I0
t + I1

t + ...+ Iit + ... =

∞∑
i=0

Iit . (13)

We will hope that the series converges. In practice, we will monitor the values of Iit and terminate
the series when these values are acceptably small.

For notational convenience, we are going to define the transport operator T (I):

T (I) ≡ 1

c

∂I

∂t
+ Ω · ∇I + σt(Tn, ν)I −

∫ ∞
0

∫
4π
dν ′dΩ′ σs(Tn, ν, ν ′)I (14)
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Note that T is linear in I. This definition allows us to write Eq.(11) as

T (It) = σa(Tn, ν)B(Tn+1, ν) =
1

4π
σa(Tn, ν)b(Tn+1, ν)ac(Tn+1)4 (15)

The term on the right-hand side of Eq.(15) describes thermal emission. Both σa(T, ν) and
b(T, ν) depend on the frequency and temperature. This means that these two terms allow
us to calculate the temperature-dependent probability distribution function for the frequency
of the emitted photons, as well as the total amount of energy that is emitted. For numerical
convenience, we can remove the temperature dependence of the probability distribution function
for the frequency by fixing both the opacity σa and the normalized Planck function b at the initial
temperature Tn. This approximation is used, for example, in the IMC method [3]. We will use
it below, because we will be sampling the thermal emission in an iterative way, and we wish to
avoid calculating a new probability distribution function for each iteration. This means that we
will replace Eq.(15) with this equation

T (It) =
1

4π
σa(Tn, ν)b(Tn, ν)ac(Tn+1)4 . (16)

In Eq.(16), the frequency distribution of the thermally emitted particles is centered at tn, but
the magnitude of the energy emitted is the correct Tn+1 value.

The first step in the series solution of Eq.(13) is to solve for Ic via Eq.(9) and Is via Eq.(10)
as described in the last section. That leaves us with Eqs.(11) and (12). From our solutions to
Eqs.(9) and (10), we know the integrals over angle and frequency of σaIc and σaIs in Eq.(12).
The only unknowns are It and T .

The second step is to represent It with Eq.(13). This gives us

T

( ∞∑
i=0

Iit

)
=
∞∑
i=0

T (Iit) =
1

4π
σa(Tn, ν)b(Tn, ν)ac(Tn+1)4 , (17)

with Tn+1 satisfying

∂em
∂t

=

∫
4π

dΩ

∫ ∞
0

dν σa(Tn, ν)(Ic + Is) +

∞∑
i=0

∫
4π

dΩ

∫ ∞
0

dν σa(Tn, ν)Iit − cσP (Tn)a(Tn+1)4 .

(18)

Since we have introduced new degrees of freedom (the Iit), Eqs.(17) and (18) do not determine
the value of the Iit individually; they only constrain their sum It. The third step in our solution
technique is to introduce some further equations to constrain the values of the Iit . This is done by
representing the temperature source with a sequence of values T i. We choose the Iit individually
to satisfy

T (I0
t ) =

1

4π
σa(Tn, ν)b(Tn, ν)ac(T 0)4

T (I1
t ) =

1

4π
σa(Tn, ν)b(Tn, ν)ac[(T 1)4 − (T 0)4]

...

T (Iit) =
1

4π
σa(Tn, ν)b(Tn, ν)ac[(T i)4 − (T i−1)4]

...

(19)
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where we have not defined the T i yet. The T i in Eq.(19) are used only in determining the
amount of energy that is thermally emitted in iteration i. Physical quantities such as σa and σs
are evaluated at the Tn, the temperature at the beginning of the time step. Note that, as T i−1

approaches T i, the magnitude of the thermal source term is reduced.

If the sequence of expressions in Eq.(19) are summed over i, the source terms cancel in pairs
and leave us with

T

( ∞∑
i=0

Iit

)
=
∞∑
i=0

T (Iit) =
1

4π
σa(Tn, ν)b(Tn, ν)ac(T∞)4 , (20)

where T∞ is the value to which the sequence of T i converges (assuming that the sequence does
converge).

One property we would like the sequence of T i to have is that it converges to Tn+1; that is, we
would like T∞ = Tn+1. Tn+1 satisfies a backward Euler difference approximation to Eq.(18):

em(Tn+1)− em(Tn) =

∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σa(Ic + Is)

+

∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σaIt − cσPa(Tn+1)4∆t . (21)

If T i does converge to Tn+1, then the solution of Eqs.(17) and (21) with an infinite number of
terms would be a good approximation, first order in ∆t, to Eqs.(11) and (12). We could then
further hope that Iit and T i − T i−1 will become small as i increases, so that we could terminate
the series at some finite value of i and take that finite series as an approximate solution to
Eqs.(11) and (12).

Another desirable property for the T i would be that they be monotonically increasing. That
is, we would like T i+1 > T i for all i. This property would ensure that the source terms on the
right-hand side of Eq.(17) would always be positive. Positivity is a desirable property for source
terms in a Monte Carlo solution because it ensures that we will always have positive weight
particles.

The fourth step in our approximation technique will be to define the sequence T i in such a way
that it has the two properties mentioned above. We do this by choosing the T i to satisfy the
following non-linear equation:

em(T i)−em(Tn) =

∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν

σa(Ic + Is) + σa

i−1∑
j=0

Ijt − cσPa(T i)4∆t

 . (22)

This equation defines em(T i) to be em(Tn) added to the amount of energy absorbed from the
photons representing Ic and Is and the amount of energy absorbed from the photons representing
I0
t through Ii−1

t , minus the amount emitted at the temperature T i. That is, we are calculating Ti
to be the temperature we would obtain if a) the absorption from all initial and source photons is
accounted for, b) the emission and absorption from all previous iterations of thermally emitted
photons is accounted for, and c) the emission, but not the absorption, of photons from the
current iteration are accounted for. This last point is crucial, because it ensures that Ti < Ti+1;
this will be proved below.
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As i increases, then (provided that Iit and T i − T i−1 are becoming small), Eq.(22) converges to
Eq.(21). Thus this definition for T i satisfies the first property we desire.

When we simulate the particles from iteration i, the amount of energy absorbed will be greater
than zero, as long as we have σa > 0. Since σa and Ijt are always greater than or equal to zero,
the integral over Ijt in Eq.(22) is always positive or zero. Since the integral term in Eq.(22) must
be larger for i+ 1 than it is for i, the value we get for T i+1 must be greater than or equal to the
value of T i.

This can be proved directly by differentiating Eq.(22) with respect to the energy absorbed. If
we define the energy emitted Ee as

Ee(T
i) ≡ cσPa(T i)4∆t (23)

and the energy absorbed Ea as

Ea(Ic, Is,

i−1∑
j=0

Ijt ) ≡
∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σa(Ic+ Is) +

∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σa

i−1∑
j=0

Ijt ,

(24)
then Eq.(22) can be written as

em(T i)− em(Tn) = Ea − Ee(T i) . (25)

Then differentiating with respect to Ea yields

∂em
∂T

∂T i

∂Ea
= 1− 4cσPa(T i)3 ∂T

i

∂Ea
∆t . (26)

Solving for ∂T i

∂Ea
yields

∂T i

∂Ea

[
∂em
∂T

+ 4cσPa(T i)3∆t

]
= 1 . (27)

Since thermodynamics requires ∂em
∂T > 0, and since σP ≥ 0 and T i ≥ 0, the term in brackets is

positive, and so Eq.(27) implies that ∂T i

∂Ea
≥ 0. Since Ea increases as i increases, the sequence T i

is monotonically increasing, which is the second property we desire.

When Eq.(22) is solved for T i, the integrals over Ic, Is, and Ijt for j ∈ [0, i − 1] are all known.
This equation defines a value of T i for every zone in the simulation. It may be solved by any
convenient 1D root-finding technique.

4. COMPARISON TO OTHER MONTE CARLO THERMAL RADIATION
TRANSPORT METHODS

In this section, we will compare the Iterative Implicit Monte Carlo method with some other
Monte Carlo methods that have been employed for thermal radiative transport calculations.

First, we will discuss the Implicit Monte Carlo (IMC) method of Fleck and Cummings [3]. In
IMC, stability is achieved by replacing a fraction fa of the absorption by effective scattering.
The “Fleck factor” fa, lying in the range [0, 1], is calculated as a function of temperature and
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opacity, and this factor multiplies the absorption opacity and the thermal emission in both the
transport equation and the material energy density equation. The effect of this is to replace a
fraction of the absorption that takes place during the time step by scattering, called “effective
scattering”; this “effective scattering” models absorption and re-emission. Because the amount
of thermal emission is not calculated with the end of time step temperature Tn+1, the IMC
method, while stable, can be thermodynamically inconsistent. For example, zones in a problem
can reach a temperature higher than that of a Planckian source which is illuminating them.
A negative consequence of effective scattering in very opaque problems is that the amount of
effective scattering can be very large, which can increase the run time significantly. In contrast,
the IIMC method does not have effective scattering. It achieves stability and thermodynamic
consistency by modeling thermal emission at a close approximation of Tn+1, the value of which
it achieves by iterating. More iterations are required when thermal emission dominates the
energetics of a problem. This usually happens in problems with large opacities, which IMC
would treat with a large amount of effective scattering. Thus, problems with a large opacity
require many iterations, and can have larger run times than IMC.

Like the Symbolic Implicit Monte Carlo method (SIMC), [8], IIMC models thermal emission
at Tn+1. In SIMC, this is achieved by using Monte Carlo particles to form a global linear or
non-linear system that is solved for Tn+1. (Whether the global system is linear or non-linear
depends on whether certain approximations for the time centering of the opacity and equation
of state are employed.) IIMC replaces this global system with a series of local non-linear solves
in each zone. SIMC only needs to simulate one set of thermally emitted particles, while IIMC
runs many sets of thermally emitted particles, one set for each iteration, which it uses to form
a series of approximations to Tn+1.

As SIMC does, we expect that IIMC would have increased “teleportation error” compared to
IMC. The “teleportation error” is a spatial discretization error in the location of thermally
emitted particles. Because we have a finite zone size, and, in most simulations, a piecewise
linear spatial representation of the zonal temperature, we can select emission locations in a zone
that are far away from where absorption actually occurred. (This can happen in zones that are
more than a few mean free paths across.) This spatial inaccuracy can lead to thermal emission
in parts of a zone that are not actually causally connected to a source, which in turn leads
to an unphysically fast propagation of thermal waves. The effective scattering in IMC models
absorption and re-emission at actual particle locations, and in IMC, thermal emission is reduced
by the factor f . Both of these effects reduce, but do not eliminate, the “teleportation error”.
Because both IIMC and SIMC simulate all thermal emission by creating particles at sampled
locations, both methods are subject to more “teleportation error” than IMC. In the problems
simulated in this work, we have not seen evidence of more “teleportation error” than is present
in IMC. We believe this is because we have not tried to simulate problems with zones that are
optically thick enough. We expect this effect to appear in more challenging problems.

In [9], an iterative modified IMC algorithm that attempts to get a more accurate value of the
opacity is described by Cheatham. That algorithm does this by a predictor-corrector method-
ology. An IMC simulation with a relatively small number of particles is run to get an estimate
of the future matter temperature Tn+1. This is the predictor step. This estimate of Tn+1 is
then used to get an updated value of the opacity for another IMC simulation, the corrector step,
the results of which are used as the final tn+1 values. Like IIMC, this method uses batches of
particles, the results of which affect later batches. Unlike IIMC, the number of batches is fixed
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at 2, and the first batch is thrown away - it does not contribute to census. The only part of the
calculation that is affected by the first batch is the opacity. This method does not attempt to
use the value of Tn+1 obtained in the predictor step to calculate the amount of thermal emis-
sion. Thus, this method can exhibit the same thermodynamically inconsistent behavior as IMC,
particularly in cases when the opacity is large but not a strong function of temperature.

Another iterative IMC method, called Iterative Thermal Emission IMC (ITE IMC), is described
by Long, et. al. [10]. In this method, as in IIMC, the particles are run in several batches.
The number of batches to be employed must be selected at the beginning of the time step.
The amount of thermal emission, and the value of the Fleck factor, varies between batches,
using information from previous batches. Since the Fleck factor varies, the amount of effective
scattering varies between batches also. The ITE IMC method reduces the amount of violation
of the maximum principle considerably compared to IMC. However, it does not eliminate it. It
is a combination of semi-implicit steps, not a fully implicit method like IIMC.

5. A SIMPLE ANALYTIC EXAMPLE

A simple test problem that can be used to illustrate the behavior of IIMC is an infinite medium
with a constant temperature T̂ , no source, σa a constant independent of ν, σs = 0, and an
equation of state em(T ) = γT 4, with γ constant. Since σa is independent of frequency, σP = σa.

In this problem, there are no spatial or temporal derivatives and no angular dependence, so the
solution of Eq.(1) is I(ν,Ω) = B(ν, T̂ ), and the solution of Eq.(7) is em = γT̂ 4.

This problem can be analyzed over the interval [tn, tn+∆t] in terms of Ic, Is, and It. The initial
conditions of the problem are Iic = B(ν, T̂ ). Eq.(9) becomes

1

c

∂Ic
∂t

= −σaIc (28)

which has the solution Ic(t) = B(ν, T̂ )e−cσa(t−tn).

Since there is no source, Is(t) = 0.

Eq.(11) becomes
1

c

∂It
∂t

= −σaIt + σaB(T, ν) (29)

with It(tn) = 0. This has the solution It(t) = B(ν, T̂ )[1 − e−cσa(t−tn)]. We see that, although
neither Ic(t) nor It(t) are independent of time, Ic(t) + It(t) equals the constant value B(ν, T̂ ) as
required.

We will now apply the iterative solution technique described by Eqs.(19) and (22) to this prob-
lem.

Ic(t) remains the same as in the analytic solution above. We require the value of the energy
deposited by Ic + Is for Eq.(22). Using Eq.(3), that value can be calculated:∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σa(Ic + Is) =

∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σaB(ν, T̂ )e−cσa(t−tn)

= aT̂ 4[1− e−cσa∆t] . (30)
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Using the equation of state, Eq.(22) becomes

γ(T i)4 − γT̂ 4 = aT̂ 4[1− e−cσa∆t] +

∫ tn+∆t

tn

dt

∫
4π

dΩ

∫ ∞
0

dν σa

i−1∑
j=0

Ijt − cσaa(T i)4∆t . (31)

Iit is obtained from Eq.(19). For the infinite medium problem we are describing, the transport
operator has the simplified form T (I) = 1

c
∂I
∂t + σaI. From Eq.(19), we find that Iit satisfies

1

c

∂Iit
∂t

+ σaI
i
t = σa[B(T i)−B(T i−1)] . (32)

Eq.(32) has the solution

Iit(t) = [B(T̂ i)−B(T̂ i−1)][1− e−cσa(t−tn)] . (33)

which holds for i = 0 if we use the definition T−1 ≡ 0. Iit is independent of angle, as we expect
in an infinite medium problem, because B is independent of angle.

It is convenient to define the energy density eit associated with Iit :

eit(t) ≡
1

c

∫
4π

dΩ

∫ ∞
0

dν Iit (34)

Using Eq.(3), we find that

eit(t) = [a (T i)4 − a (T i−1)4][1− e−cσa(t−tn)] . (35)

Integrating this expression over time yields∫ tn+∆t

tn

dt eit(t) = [a (T i)4 − a (T i−1)4]

[
∆t− 1

cσa
[1− e−cσa∆t]

]
, (36)

and thus
i−1∑
j=0

∫ tn+∆t

tn

dt ejt (t) = a (T i−1)4

[
∆t− 1

cσa
[1− e−cσa∆t]

]
, (37)

Eq.(37) allows us to express the integral over Iit in Eq.(31) in terms of T i. Then Eq.(31) can be
solved for T i, yielding

(T i)4 =
γ + a[1− e−cσa∆t]

γ + acσa∆t
T̂ 4 +

cσa∆t− [1− e−cσa∆t]

γ + acσa∆t
a(T i−1)4 . (38)

The value of (T 0)4 is

(T 0)4 =
γ + a[1− e−cσa∆t]

γ + acσa∆t
T̂ 4 . (39)

Eqs.(35) and (38) allow us to get the solution of the iterative method for any value of i. As
i→∞, assuming that T i converges, both T i and T i−1 in Eq.(38) approach T∞; solving Eq.(38)
for T∞ gives T∞ = T̂ , as it must to agree with the analytic solution T (t) = T̂ .

These equations also give us some insight on when the method should converge quickly and
when it will converge slowly. When γ is much larger than both a and cσa∆t, Eq.(39) implies
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that T 0 ≈ T̂ , and Eq.(38) implies that T i ≈ T i−1. In this case, T i converges quickly to T̂ . The
first criterion means that the energy density of the material is large compared to the radiation
energy density at Ti, and the second means that the fractional change in the radiation energy
density eit is small in the interval [tn, tn+∆t], because that change is proportional to e−cσa∆t via
Eqs.(30) and (37). In this situation, we would expect that the sequence of material temperatures
T i would not change much during the time step.

When γ � a and cσa∆t� 1, then T 0 as given by Eq.(31) is small, and we expect convergence
to be slow, as many cycles of emission and absorption will be necessary to build up enough
thermally emitted photons so that

∑
i I
i
t will reach the steady-state value B(ν, T̂ ). The first

criterion means that the energy density of the material is small compared to the radiation
energy density at T i, and the second means that the the fractional change in the radiation
energy density eit is large the interval [tn, tn + ∆t].

This convergence behavior is shown by two specific examples. We use units where a = c = 1
and take T̂ = 1, tn = 0 and ∆t = 1. We examine two cases: case 1 has γ = 1, σa = 1 while
case 2 has γ = 10−4, σa = 1010. For case 1, we expect rapid convergence of T i to T̂ , while for
case 2 we expect slower convergence. Fig. 1 shows T i versus i for both cases. Fig. 2 shows

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8  9

T

i

case 1
case 2

Figure 1: T i computed from Eq.(31) versus iteration number i for the analytic problem described
in Section 5. for two different values of γ and σa. Case 1 has γ = 1 and σa = 1 while case 2
has γ = 10−4, σa = 1010. Case 1 shows rapid convergence of T i to T̂ , while case 2 shows slow
convergence.

the energy density of census photons ec(t), the energy density of thermally emitted photons∑i
j=0 ejt (t), and the total radiation energy density e(t), for a few different values of i over the

interval [0,∆t = 1] for case 1. We see that ec(t) declines relatively slowly over the time step,
while

∑i
j=0 ejt (t) converges after three iterations to the value given by Eq.(37). With i = 2, the

total energy density is very close to the analytic value of aT̂ 4 = 1.
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Figure 2: ec(t) and
∑i

j=0 ejt (t) for case 1 of the analytic problem described in Section 5.. Case

1 has γ = 1, σa = 1. Case 1 shows rapid convergence of e(t) to T̂ .

Fig. 3 shows ec(t),
∑i

j=0 ejt (t), and e(t) for a few different values of i over the initial part of the
interval [0,∆t = 1] for case 2. Because of the rapid decay of the energy in census photons, and
the rapid increase in the thermal emission, we show only a part of the time interval. Because the
census photons are quickly absorbed, the radiation energy density is dominated by thermally
emitted photons for most of the interval.

∑i
j=0 ejt (t) converges after three cycles. About seven

iterations are necessary before the total energy density is very close to the analytic value of
a T̂ 4 = 1.

We will see that convergence behavior of T i for the infinite medium problem applies to the general
case also. In Eq.(22) and Eq.(21), the integral over Ic and Is represents the amount of energy
absorbed from the initial and source photons, while the integral over Iit represents the amount
of energy absorbed from thermally emitted photons. Comparing Eq.(22), which T i satisfies,
to Eq.(21), which Tn+1 satisfies, we see that when the amount of absorption of the thermally
emitted photons is large compared to the amount of absorption, T i � T∞, and convergence will
be slow. In the opposite case, T i ≈ T∞, and convergence will be fast. Simulations using more
realistic equations of state and sources, and more than one zone, described in Section 7., will
demonstrate this.

6. IMPLEMENTATION DETAILS

In the next section, we will describe the results of simulations performed using the IIMC method.
In this section, we will give some details about our implementation of the algorithm.

IIMC was implemented in the IMC package of the Kull IMC code [5]. The Fleck factor was
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Figure 3: ec(t) and
∑i

j=0 ejt (t) for case 2 of the analytic problem described in Section 5.. Case

2 has γ = 10−4, and σa = 1010. Case 2 shows very slow convergence of et(t) to T̂ .

set to 1 in IIMC simulations by setting the parameter α = 0 in Eq.(4.1d) of [3]. The routines
that handle and track non-thermal source and census particles were the same as in IMC; these
routines simulate Eqs.(9) and (10). The code was modified to allow multiple iterations of thermal
source particles, simulating Eq.(19). The routine generating the thermal source particles had
to be modified so that the amount of energy emitted was proportional to the difference of two
Planckians, as in the right-hand side of Eq.(19). Simulating this equation also required the code
to calculate a running tally of deposition, that is, the deposition from non-thermal source and
census particles added to the deposition from previous iterations of thermal source particles.
This quantity was necessary to calculate T i via Eq.(21).

This non-linear equation was solved using Ridder’s method [6]. We found that it was necessary
to put a very strict convergence criterion on the method, because, for problems with a large
opacity, a small change in T i can lead to a large change in the values of the terms in Eq.(21).
We required that the change in T i to be less than 10−15 before accepting T i as a solution to
Eq.(21).

We will now describe the termination condition for the iteration of the thermal emission (that is,
the termination of the iteration described by Eq.(19)). The iteration is terminated globally - all
zones in the problem keep emitting while the iteration continues. We compute the magnitude of
the thermally emitted energy in the current iteration summed over all the zones in the problem.
We also keep a running sum over all iterations of the emission summed over all the zones in the
problem. The iteration is terminated when the first quantity is less than 10−12 of the second.
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That is, when∑
z∈zones

1

4π
σa(Tn, ν)b(Tn, ν)ac[(T i)4−(T i−1)4] < 10−12

∑
i

∑
z∈zones

1

4π
σa(Tn, ν)b(Tn, ν)ac[(T i)4−(T i−1)4] .

(40)

We employed the same number of particles to model thermal emission for each iteration i. This
choice was made purely for programing convenience. Since the amount of thermal emission in
each iteration decreases as T i−1 approaches T i, this means that the energy weight of the particles
is decreasing as i increases. It is possible to reduce the number of particles representing thermal
emission as the amount of thermally emitted energy decreases. This would presumably reduce
the expense of the IIMC simulation.

7. NUMERICAL SIMULATIONS

7.1 Su-Olson volume source test problem

Su and Olson provided a semi-analytic solution for a one-dimensional, time-dependent, gray
thermal radiative transport problem with a volume radiation source [11]. In this benchmark,
which we will refer to as the Su-Olson problem, a = c = σa = 1 and cV = 4T 3

m. At x = 0 there
is a reflecting boundary and at large x there is a vacuum boundary. A volume radiation source
with an emission rate of 1 per unit volume per unit time is located between x = 0 and x = 0.5,
and is turned on between t = 0 and t = 10.

Results were obtained using IIMC and IMC with ∆t = 0.1. The simulations used 1000 particles
per IIMC cycle. Figure 4 shows that the computed material and radiation energy densities agree
with the analytic solution. (For the earliest value of radiation energy density plotted in Figure 4,
which occurs at t = .1, the value of calculated by IIMC is low compared to the analytic solution.
This occurs because the radiation energy density is computed as an average over every particle
path. This effectively centers the radiation energy density at the midpoint of the time step,
rather than at the end. Thus, in Figure 4, we are comparing the simulation result at tn + ∆t/2
to the analytic value at time tn+1. This difference is significant for the earliest result, which
occurs after only one time step. For later results, it is less significant, which is why the later
results show better agreement.)

Figure 5 shows how the number of IIMC iterations required in a time step changes over time.
IIMC took 9 iterations in the initial time step and eventually converged to 5 IIMC iterations
per time step. The total number of IIMC iterations was 564 and the run time was roughly 530
seconds on a single processor. This figure describes a simulation that took 100 time steps. (All
simulations described in this paper were performed on 1 processor of a Linux cluster of 2.6 GHz
Intel Xeon processors with 32 GB of memory per processor running Red Hat Linux.)

7.2 Infinite Medium Problem with T−3 Opacity

In this section an infinite medium problem with an opacity that scales as T−3 is considered.
This problem has c = a = 1.0 and σa = T−3. It was simulated using one zone with ∆x =
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Figure 4: Material and radiative energy densities vs. position at various times for the Su-Olson
problem described in Section 7.1 using IIMC. The reference solution from [11] is also indicated
on the plots.

∆y = ∆z = 1 and reflecting boundaries on all faces. The initial conditions are Tm,0 = 0.1 and
Tr,0 = 1.0. Figure 6 shows the results for time steps of 10−2, 10−3 and 10−4 using both IMC and
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Figure 5: IIMC iterations per time step vs. time for the Su-Olson problem described in Section
7.1. IIMC needed a total of 564 iterations over the entire simulation (100 time steps) and had
a runtime of approximately 530 seconds.

IIMC.

With ∆t = 10−4, we see that all three methods produce essentially the same result. This value of
∆t is sufficiently small for all of the methods to resolve the changes in opacity and temperature.
Both methods obtain the same result: temperature equilibrium is reached at approximately
t = 0.6. As we increase ∆t to 10−3, we see that the IMC method becomes significantly less
accurate than the IIMC method; the IMC results differ from the ∆t = 10−4 results more than
the IIMC results do. With ∆t = 10−2, IMC violates the maximum principle. Tr exceeds Tm
after one time step, and this situation is maintained for many time steps, because the large value
of Tm causes σa to be so small that the rate of thermal emission is very small. This is not the
case for IIMC. Although IIMC also degrades in accuracy as ∆t increases, it does not degrade as
seriously as the IMC method and it avoids violating the maximum principle. IIMC, being fully
implicit, obtains the equilibrium solution in one time step when ∆t becomes sufficiently large.

Table I summarizes the efficiency of the methods. The total run time over all time steps from
t = 0 to t = 1, normalized to the number of particles generated by the simulation, is about the
same for the two methods. Thus, the IIMC method is comparable in cost to the IMC method
for this particular problem.

7.3 Face Source Problem

Here, we consider a one zone problem with a face source, material properties, and opacities
similar to those of the the Marshak wave problem from Larsen and Mercier [7]. The problem
features a radiation source on the left boundary at temperature TB = 1.0 keV and an opacity
which scales as T−3. The left boundary is vacuum while the right boundary is reflective. The
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Table I: Table summarizing run time characteristics of the IMC and IIMC methods for the
infinite medium problem described in Section 7.2. The reported values are summed over all
time steps for t ∈ [0, 1]. 1000 particles histories are simulated per IIMC iteration.

∆t Method Total IIMC Iterations Run time (s) Photons Created Run time (s)
Photons Created

10−2 IMC — 84 1.94E+7 4.32E-6
10−2 IIMC 557 306 6.54E+7 4.67E-6
10−3 IMC — 827 2.00E+8 4.14E-6
10−3 IIMC 3015 1823 4.01E+8 4.54E-6
10−4 IMC — 8552 2.00E+9 4.28E-6
10−4 IIMC 30003 17936 4.00E+9 4.49E-6

values of the other parameters are given by Table II. The domain runs between x = 0 cm and
x = 0.4 cm and the mesh consists of just one spatial cell. This problem has a much higher
opacity than the one described in the previous section. We use it to test the behavior of IIMC
for problems with zones many mean free paths thick.

Table II: Parameter values for the face source problem.

σa(T ) = 15
π4

27
T 3

1
cm (T in keV)

ρcV = 8.1181 · 1013 erg
keV cm3

c = 30.0 cm
ns

a = 1.372016 · 1014 erg
keV4 cm3

Figure 7 shows the material temperature computed after one time step with ∆t = 0.4 ns for
various values of the initial material temperature, Tm,0. As in the previous infinite medium
problem, we see that the IMC method frequently results in an unphysical solution. The material
temperature, Tm, is greater than the boundary source temperature TB in nearly all of the cases
tested for IMC. We see that this is not the case for IIMC, as Tm < TB = 1 keV for all values of
Tm,0 tested.

Although the IIMC method does not violate the maximum principle, the run time quickly
becomes prohibitively costly as Tm,0 decreases, effectively increasing the initial opacity. Figure
8 shows how quickly the number of IIMC iterations required for just one time step grows. For
high σa, nearly all of the emitted photons in each IIMC iteration are reabsorbed by the material.
However, T i, as calculated from Eq. (22), is the value of the temperature that would be achieved
if none of the thermally emitted photons were reabsorbed. Thus, when the opacity is large, T i is
a very low estimate of Tn+1. Since T i is small, the thermal emission on iteration i is small, and
the absorption during iteration i is small. This means that the change in the absorbed energy
is small, so T i+1 is only slightly larger than T i. This results in extremely slow convergence for
Ea, I

i
t , and T i, which, in turn, results in slow convergence for the IIMC method overall. This

increase in the number of iterations when the opacity is large is in accord with the behavior of
the analytic problem described in Section 5.
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To further illustrate how IIMC performs as Tm,0 decreases or as σa increases, we revisit Eq. (25).
For the face source problem, with em(T ) = ρcvT , Eq. (25) can be rewritten as

ρcV (T i − Tn) = Ei−1
a − cσPa(T i)4∆t (41)

When we solve for T i in this equation, we are essentially assuming that none of the emitted
energy in the i-th IIMC iteration (which has a magnitude of cσPa

[
(T i)4 − (T i−1)4

]
∆t) will be

reabsorbed by the material. This gives us a value for T i that is guaranteed to be greater than
T i−1. This is a desirable property, as it helps ensure that the T i are monotonically converging to
T∞ from below. However, when σP is large, the assumption that none of the emitted energy is
absorbed by the material is very much untrue and, as a result, T i is a very poor approximation
for T∞.

Let us define p as the probability that an emitted photon that will escape re-absorption by the
material. One technique we have considered to accelerate the IIMC process is the inclusion of p
in Eq. (41) to get a better estimate for T i, denoted as T ∗:

ρcV (T ∗ − Tn) = Ei−1
a − cσPa(T ∗)4∆t+ (1− p)cσPa

[
(T ∗)4 − (T i−1)4

]
∆t (42)

Here, p = 1 would give us the lowest possible value of T ∗, returning Eq. (42) to Eq. (41) and
yielding the original T i value. p = 0 would give us the highest possible value of T ∗, an upper
bound for T∞. Figure 9 shows T ∗ plotted against p for i = 0, for three different problems: the
face source problem with Tm,0 = 0.1 and Tm,0 = 1, and the first time step of the infinite medium
problem from Section 7.2 with ∆t = 10−2. Note that the equation of state is the same in the
infinite medium problem as it is in the face source problem, so Eq. (42) is valid for all three
plots in Figure 9.

From the markers indicating T∞ in Figure 9, we can see that, the smaller the value of p, the
more difficult it is for a problem to converge. To see why this is the case, we can derive an
approximation for the number of iterations required to converge. Let ∆Eia = Eia −Ei−1

a . Then,
if we interpret p as the fraction of the emitted energy that is not absorbed in each IIMC iteration,
∆Eia can be represented as a geometric sequence:

∆E−1
a = E−1

a

∆E0
a = (1− p)∆E−1

a

∆E1
a = (1− p)∆E0

a = (1− p)2∆E−1
a

. . .

∆Eia = (1− p)i+1∆E−1
a

. . . (43)

Thus,

E∞a =
∞∑

i=−1

∆Eia =
E−1
a

1− (1− p)
=
E−1
a

p
(44)

Let n be the number of IIMC iterations required to achieve the convergence criterion. If the
convergence criterion is given by

∆Eia
Eia

≈ ∆Eia
E∞a

< ε (45)
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then setting i = n and plugging in our definitions of ∆Eia and E∞a yields

∆Eia
E∞a

=
(1− p)n+1E−1

a

E−1
a /p

= p(1− p)n+1 < ε (46)

Taking the logarithm of both sides and rearranging the inequality to solve for n yields

n ≥ log ε− log p

log (1− p)
− 1 (47)

Figure 10 shows the minimum n required to satisfy Eq. (47) as a function of p. This approxi-
mation of n grows very quickly as p gets small, and roughly scales as 1/p. We note that Eq. 47
is a gross simplification of what actually occurs. This figure is only intended to illustrate how
quickly n can grow as p shrinks and σa increases. In reality, Eia changes much more erratically
due to statistical noise from the Monte Carlo simulation, and this affects both the accuracy and
the convergence rate of the IIMC simulation.

If p is known exactly beforehand, solving for T ∗ in Eq. (42) would yield T∞ exactly. We
performed simulations in which we approximated p as the fraction of emitted energy in a zone
that is not absorbed in that zone in the previous IIMC iteration. However, because a photon
escape is such a rare event for large values of σP , it is difficult to get an accurate estimate
of p without running an enormous number of particle histories. An overestimate of p would
yield T ∗ > T∞; this would ruin the monotonic convergence of the T i sequence, and result in
negative weight particles. Future work will attempt to approximate p in a more sophisticated
way, perhaps by using information on the size and shape of the zone and the average mean free
path in the zone.

To significantly improve the convergence, it would be necessary to obtain an approximation of p
that only slightly underestimates the actual value. As Figure 9 indicates, if p is underestimated
by more than 2-3 orders of magnitude, convergence is improved only marginally, since T ∗ changes
so sharply with p. If p is too close to the true value, however, it is easy for us to overestimate
E∞a , since it is also very sensitive to changes in p.

7.4 Frequency-Dependent Face Source Problem

In this subsection, we consider a frequency-dependent face source problem from section V of
Fleck and Cummings [3]. This problem has a frequency-dependent macroscopic absorption
opacity given by Equation 5.1 [3]:

σa(T, ν) =
27 keV3 cm−1(

νh
k

)3 (1− e−
νh
kT ) (48)

The equation of state is given by
em(T ) = ρcvT (49)

where ρcv = 8.1181 · 1013 erg
keV cm3 is constant. This value is the same as that of ρcv in the gray

face source problem of Section 7.3.

The original problem from Fleck and Cummings used an initial material temperature of 0.001
keV, but, because IIMC is prohibitively slow for this case, we used the higher initial temperature
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Tm,0 = 0.1 keV for our simulations. As in the previous problem, the left boundary is a face
source at 1.0 keV, at x = 0. The right boundary in this problem is a vacuum at x = 4 cm.
∆x = 0.4 cm is used for the spatial mesh.

Spatial temperature profiles from IMC and IIMC for time steps of ∆t = 2 · 10−4 ns and ∆t =
2 · 10−1 ns are shown in Figures 11(a) and 11 at ct = 3, 6, and 12 cm. As in the Fleck and
Cummings paper, ct is the time t multiplied by the speed of light c in order to convert it to a
distance value. Note that, in Figure 11, one time step of 2 · 10−1 ns results in a ct value of 6 cm,
so there is no result for ct = 3 cm.

The results here are similar to those from the infinite-medium problem in Section 7.2. With a
sufficiently small time step, as in Figure 11(a), the IMC and IIMC results agree well. The small
differences between the IMC and IIMC results are due to statistical noise that could be further
reduced by using more particles per time step and per IIMC iteration. However, if the time step
grows too large, as in Figure 11, IMC becomes significantly more inaccurate than IIMC and
eventually violates the maximum principle. We see that, even as the IMC simulation progresses
to the next time step, the material temperature in the first zone remains unphysically high.
In contrast, the IIMC simulations produce results that are thermodynamically consistent. The
material temperature remains below both the source temperature and the radiation temperature
at all times and locations.

Figures 12 and 13 show the distribution of photon frequencies from IIMC in two different sce-
narios. The histogram in Figure 12 was obtained by running IIMC for one time step of size
∆t = 2 · 10−1 ns with slightly altered parameters from the frequency-dependent face source
problem that has been described in this section. Instead of Tm,0 = Tr,0 = 0.1 keV, we have
Tm,0 = Tr,0 = 1 keV. The right boundary was made reflective, and the domain was reduced to
one spatial cell of size 0.4 cm. This problem starts out in equilibrium and, as expected, remains
in equilibrium.

The histogram in Figure 13 was obtained by running IIMC for the regular frequency-dependent
face source problem, with Tm,0 = Tr,0 = 0.1 keV, a domain stretching 4 cm, and a vacuum
boundary on the right hand side. The histogram shown is obtained at the 8th time step, with
∆t = 2 · 10−1 ns, where Tm and Tr are nearly in equilibrium at 0.955 keV and 0.935 keV,
respectively.

Figures 12 and 13 demonstrate that the photons resulting from the iterations in Eq.(19) have
the correct frequency. The source terms in this equation are the difference of Planckians at two
different temperatures, but have the same frequency distribution, as discussed in the description
of Eq.(16). So the photons resulting from the source terms in Eq.(19) have different energies.
However, for a zone in which Tr ≈ Tm, we should find that the frequency distribution of the
sum of all of these photons will be a Planckian at the zone temperature. This is in fact the case
for IIMC, as these figures illustrate.

CONCLUSIONS AND FUTURE WORK

We have described a new method of Monte Carlo thermal radiation transport. This method
involves iterating on the matter temperature to make the solution of the transport equation
implicit in this variable, unlike the standard IMC technique. We have named the method
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Iterative Implicit Monte Carlo (IIMC). Because the method is fully implicit on the matter
temperature, which is used to calculate the amount of thermal emission, the new method is not
subject to the violations of the maximum principle that can occur with IMC.

The IIMC method requires us to construct a monotonically increasing sequence of approxi-
mations for the matter temperature. The values of this sequence are obtained by solving a
non-linear equation for an estimate of the tn+1 temperature. This non-linear equation must be
solved once for each zone in each iteration. This estimate takes into account thermal emission,
but ignores the re-absorption of the thermally emitted photons simulated in each iteration. Ig-
noring the re-absorption ensures that the sequence of temperatures is monotonically increasing.
However, in optically thick zones, this estimate can be much lower than the true tn+1 matter
temperature. When this occurs, IIMC takes many iterations to converge to the tn+1 matter
temperature. Because of the number of iterations required can be very large in problems with
opaque zones, this new method in its current form does not appear to be competitive with IMC
for those problems .

Future efforts will focus on reducing the number and expense of iterations required in optically
thick problems. The number of iterations can be reduced by better estimating the tn+1 matter
temperature. This can be done by using an estimate of the amount of thermal energy emitted in
each zone which is reabsorbed in that zone. Ths estimate would be used in Eq.(22), and would
result in a higher value of T i. Higher values of T i would presumably result in faster convergence
and fewer iterations.

The expense of each iteration can be reduced by decreasing the number of particles used to
represent thermal emission in each iteration. As the series in Eq.(19) converges, the amount of
energy emitted in each iteration becomes smaller. In this work, we have used he same number
of particles to model thermal emission in each iteration, which means that the energy weight
of each particle decreases. Reducing the number of particles in each iteration in a manner that
reflects the decrease in the energy emitted would reduce the expense of each iteration.
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Figure 6: Comparison of IMC and IIMC for the one-zone problem described in Section 7.2 for
various ∆t.
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Figure 7: Temperature after 1 time step for the face source problem described in Section 7.3
using IIMC and IMC with ∆t = 0.4 ns. The reference solution values are calculated using an
IMC simulation at t = 0.4 ns with ∆t = 4 · 10−5 ns.
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Figure 8: Number of IIMC iterations and run time required for the first time step vs. starting
material temperature for the face source problem described in Section 7.3. Here, ∆t = 0.4 ns.
As the difference between Tm and the face source temperature increases, IIMC quickly becomes
very expensive. Note that no data exists between the markers. The lines connecting the markers
are only there as a visual aid.
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Figure 11: Spatial material and radiation temperature distributions at various values of t for
the frequency-dependent face source problem in Section 7.4. Results from both IMC and IIMC
are shown using two different values of ∆t. The times are given as ct, which is simply the time
t multiplied by the speed of light c. Note that ∆t = 2 · 10−1 ns corresponds to ∆(ct) = 6 cm, so
there is no ct = 3 cm result for that time step size.
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Figure 12: Normalized frequency distribution for problem with an absorption opacity given by
Eq. (48), after one time step of size ∆t = 2 · 10−1 ns. This problem is described in Section 7.4
as a variant of the usual frequency-dependent face source problem. It has Tm,0 = Tr,0 = 1, a
reflective right boundary, and its domain is shrunk to just one spatial cell of size 0.4 cm.
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Figure 13: Normalized frequency distribution in the first zone (centered around x = 0.2 cm)
for frequency-dependent face source problem described in Section 7.4, after 8 time steps of
∆t = 2 ·10−1 ns (ct = 48 cm). In this zone at this time, we have Tm = 0.955 keV and Tr = 0.935
keV.
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